The realization space is [1 1 0 x1^2 - 2*x1 + 1 0 1 1 0 x1^3 - 2*x1^2 + x1 1 x1 - 1] [0 1 1 2*x1^2 - x1 0 0 1 x1 2*x1^3 - x1^2 -x1 + 1 -x1^2] [0 0 0 0 1 1 1 -x1 + 1 -x1^3 + 3*x1^2 - 3*x1 + 1 x1 x1^2 - x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-2*x1^10 + 3*x1^9 + 3*x1^8 - 8*x1^7 + 5*x1^6 - x1^5) avoiding the zero loci of the polynomials RingElem[x1, 2*x1 - 1, x1 - 1, x1^2 + x1 - 1, x1^4 + 3*x1^3 - 6*x1^2 + 4*x1 - 1, x1^3 - x1^2 + 2*x1 - 1, x1^2 - 4*x1 + 2, 3*x1 - 2, 3*x1^3 - 4*x1^2 + 3*x1 - 1]